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Abstract
Although several researchers have integrated methods for re-
inforcement learning (RL) with case-based reasoning (CBR) 
to model continuous action spaces, existing integrations typ-
ically employ discrete approximations of these models. This 
limits the set of actions that can be modeled, and may lead to 
non-optimal solutions. We introduce the Continuous Action 
and State Space Learner (CASSL),  an integrated RL/CBR 
algorithm that uses continuous models directly. Our empiri-
cal study shows that CASSL significantly outperforms two 
baseline approaches for selecting actions on a task from a 
real-time strategy gaming environment. 

1. Introduction  
Real-time strategy (RTS) games are a popular recent focus 
of attention for AI research (Buro 2003), and competitions 
now exist  for  testing intelligent  agents  in  these environ-
ments (e.g., AIIDE 2007; NIPS 2008). RTS environments 
are usually partially observable, sequential, dynamic, con-
tinuous, and involve multiple agents (Russell and Norvig 
2003). Typically, each player controls a team of units that 
can gather resources, build structures, learn technologies, 
and conduct simulated warfare, where the usual goal is to 
destroy opponent units. Popular RTS environments for in-
telligent  agent  research  include  Wargus  (Ponsen  et  al. 
2005),  ORTS (Buro 2002),  and MadRTS,  a game devel-
oped by Mad Doc Software, LLC.

A main attraction of RTS environments is that they can 
be  used  to  define  and  provide  feedback  for  challenging 
real-time control tasks (e.g., controlling single units, win-
ning an entire game) characterized by large, continuous ac-
tion and state spaces. However, the vast majority of intelli-
gent agent research with RTS environments relies on dis-
cretizing these spaces (see  §2.2). This process biases the 
learner, and may render optimal actions inaccessible.

In this paper, we describe CASSL (Continuous Action 
and  State  Space  Learner),  an  algorithm  that  integrates 
case-based  reasoning  (CBR)  and  reinforcement  learning 
(RL)  methods  that  do  not  discretize  these  spaces.  We 
demonstrate and analyze CASSL’s utility in the context of 
a task defined in MadRTS. Although previous research ex-
ists on continuous action and state spaces,  as well  as on 
CBR/RL integrations, we believe ours is unique in how it 
generates actions from stored experience.
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Section 2 includes a brief introduction to the real-time 
strategy environment we use along with a summary of re-
lated research. In Section 3, we introduce CASSL and ex-
plain how it extends our previous research. Section 4 de-
scribes an evaluation of its utility in comparison with sim-
pler approaches. Finally, in Section 5 we provide greater 
context for interpreting these results. 

2. Background: Domain and Related Work
2.1 Real-Time Strategy Domain

In this paper, we focus on performance tasks whose space 
of possible actions  A and state space  S are multi-dimen-
sional and continuous. We use MadRTS, whose engine is 
also used in the  Empire Earth II™ game, for our evalua-
tion. We also considered using Wargus, but chose to use 
MadRTS because it is more reliable and supports scenarios 
with higher military relevance.

We created MadRTS scenarios to test the capabilities of 
intelligent agents for controlling a set of units using a fea-
ture-vector  representation.  Figure 1 shows a snapshot  of 
one of these scenarios, in which the units to be controlled 
are the soldier units in the lower left corner. Their task is to 
eliminate the opposing units in the scenario, which are lo-
cated in the top left and lower right corners. An action in 
this space corresponds to an order given by the agent to a 
group  of  units.  Each  order  directs  the  soldiers  to  travel 
along a vector starting at their current position, attacking 
any  opponent  units  they  encounter  after  completing  this 
movement. The lengths of these movements are variable, 
so  some  actions  have  longer  durations  than  others.  We 
evaluate an agent based on how many orders it gives, not 
how much time it requires to complete a task.

The four dimensions of the continuous action space are:
– Heading   [0°,360°],  where 0º is the heading from 

the  original  midpoints  of  player  and  opponent  sol-
diers

– Distance   [0,d], where  d is the longest traversable 
distance in the scenario

– Group size  [0,g], where g is the number of control-
lable units in the scenario

– Group  selection   {all,  strongest,  leastRecent}, 
where the values indicate the method used to select a 
group

The state space consists of eight features,  which are de-
fined relative to the midpoint of the player’s units:
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– Percentage of player’s initial soldiers still alive 
– Percentage of opponent’s initial soldiers still alive 
– Percentage of territories owned by the player 
– Heading to nearest opponent soldier  [0°,360°]
– Heading to midpoint of opponent soldiers  

[0°,360°]
– Distance to midpoint of enemy soldiers  [0,d]
– Dispersal of opponent soldiers  [0,d], defined as the 

median of distances from each opponent soldier to 
the midpoint of all opponent soldiers

– Dispersal of player soldiers  [0,d]
At each time point, the agent receives a state vector with 

the values of these features and selects an action to exe-
cute. For example, in Figure 1, the player units are at their 
initial location in the lower left corner, and the opponents 
are  in  the upper  left  and lower  right  corners.   For  both 
sides,  the  percentage  of  original  soldiers  remaining  is 
100% and the percentage of territories (borders shown by 
dotted lines) owned is 25%. The heading to the nearest op-
ponent  soldier is  shown by  Θoppnear.  The heading to the 
midpoint of opponent soldiers is  Θmidopp and the distance 
to their midpoint is shown as a line from midplayer to midopp. 
The dispersal of opponent soldiers is labeled dispopp, while 
the (small) dispersal of player soldiers is not shown.

2.2 Related Work
Several techniques for decision making have been tested in 
RTS environments,  including relational  Markov decision 
processes (Guestrin et al. 2003), integrated scheduling and 
means-ends analysis planning (Chan et al. 2007), and sim-
ulation  combined  with  Nash  equilibrium  approximation 
(Sailer, Buro, and Lanctot 2007). 

CBR and  RL approaches  have  also  been  investigated 
separately for RTS planning tasks. For example, CBR tech-
niques have been designed to select action sequences (Aha, 
Molineaux, and Ponsen 2005) and to construct plans from 
behavioral cases extracted from and annotated by human 
players  (Otañón  et  al.  2007).  RL techniques  have  been 
used  to  select:  action  sequences  (Ponsen  et  al.  2006), 
choices defined in partial  programs (Marthi  et  al.  2005), 
and challenge-sensitive actions (Andrade et al. 2005). Un-

like  these  previous  methods,  CASSL does  not  discretize 
the action space, and uses an integrated CBR/RL approach 
to select primitive actions in an RTS task.

Previous approaches for learning in the context of con-
tinuous action spaces have been investigated separately for 
CBR and RL methods. Among example CBR approaches, 
Aha  and  Salzberg  (1994)  examined  a  set  of  supervised 
learning approaches for  a  ball-catching task.  Their  algo-
rithms restricted action selection to among those that had 
been previously recorded, which limits the set of actions 
that can be selected for a new state. Sheppard and Salzberg 
(1997) describe a lazy  Q-learning approach for action se-
lection for  a  missile  avoidance task in  which  the  set  of 
states whose distance is within a threshold are located, and 
among those the action is selected that has the highest  Q 
value.  CASSL instead  applies  a  quadratic  model  to  the 
nearest neighbors and selects an action corresponding to its 
maximum. This  differs  from locally  weighted regression 
(Atkeson, Moore, and Schaal 1997), which computes a lo-
cal linear model from a query’s neighboring cases. 

Traditionally,  RL  methods  have  used  eager learning 
methods  to  help  select  actions  from  continuous  action 
spaces  (Kaelbling,  Littman,  and  Moore 1996,  §6.2).  For 
example,  these  include  training  a  neural  network  with 
state-action input pairs and  Q value outputs, and then ap-
plying gradient descent to locate actions with high Q val-
ues. Alternatively, this network could be used with an ac-
tive learning process to test actions generated according to 
a distribution whose mean and variance were varied so as 
to find a local maximum. Gaskett et al. (1999) describe an 
eager approach that  performs interpolation with a  neural 
network’s outputs. They also survey continuous action  Q-
learning systems and note that  most are eager  and yield 
piecewise-constant  functions.  In  contrast,  our  approach 
uses a lazy method for action selection and is not restricted 
to piecewise-constant action-selection functions. 

Takahashi  et  al.  (1999) instead tessellate a continuous 
action  space  in  their  Q-learning  extension.  CASSL does 
not  rely  on  decomposing  the  action  space.  Millán  et  al. 
(2002) investigate a  Q-learner that  explores a continuous 
action space by leveraging the  Q-values  of  neighboring, 
previously-explored  actions.  However,  this  limits  action 
selection to the set of previously explored actions. Buck et 
al. (2002) heuristically select a set of actions that are dis-
tributed across the action space and select the one corre-
sponding to the maximum-valued successor state. CASSL 
instead selects actions used in neighbor states, dynamically 
forms a quadratic model from them, and selects the action 
that yields a maximum value according to this model.

Sharma et al. (2007) integrated CBR and RL techniques 
in CARL, a hierarchical architecture that uses an instance-
based  state  function  approximator  for  its  reinforcement 
learner and RL to revise case utilities. They also investigat-
ed  its  application  to  scenarios  defined  using  MadRTS. 
However,  CARL’s  action  space  is  discrete,  whereas  our 
contribution  is  an  integrated  method  for  reasoning  with 
continuous action spaces. Santamaria et al. (1997) also ex-
amined  integrated  CBR/RL  approaches  that  operate  on 

Figure 1: The MadRTS State Space



continuous action spaces and applied them to non-adver-
sarial numeric control tasks. For example, this included a 
CMAC  (Albus  1975)  approach  for  Q-learning  that  dis-
cretizes the set  of possible actions and selects the action 
with the highest Q-value. In contrast, CASSL dynamically 
optimizes  a  continuous  local  model  of  the  action-value 
space, which allows access to all potential actions without 
requiring a search over all of them.

Finally,  unlike  other  Q-learning  extensions  that  select 
from among the actions in the (state) neighbors to a query, 
Hedger (Smart & Kaelbling 2000) fits a quadratic surface 
and selects an action that maximizes it. While CASSL also 
calculates a regression surface, it is based on the value of 
states that would occur  if the state changed according to  
trajectories observed in the past. Although these past tra-
jectories may be inaccurate for the current state, the values 
predicted are influenced less by nearby cases, and provide 
a more diverse basis for the regression surface.

3. Continuous Action and Space Learning
We now describe CASSL (Continuous Action and Space 
Learner),  which  integrates  case-based  and  reinforcement 
learning methods to act in an environment with continuous 
states and actions. CASSL leverages our experiences with 
CaT (Aha et al. 2005), which uses CBR techniques (but not 
RL) to control groups in Wargus (Ponsen et al. 2005), a dy-
namic,  non-episodic,  and nearly  deterministic  RTS envi-
ronment. CaT’s control decisions focus on tactic selection, 
where tactics are comparatively long sequences of primi-
tive actions lasting a significant fraction of a trial.

3.1 Motivation for this Integrated Approach
CaT has two limitations that CASSL addresses. First, CaT 
was designed for an abstract  action space (i.e.,  it  selects 
from among a small set of pre-defined tactics) and required 
a  large  state-space  taxonomy;  it  was  not  designed  for  a 
knowledge-poor continuous action domain or, more gener-
ally, domains that have a large number of primitive actions. 
Techniques that make decisions of smaller granularity may 
permit greater control, and eliminate the need for creating 
tactics in advance. Greater control may also increase task 
performance and reduce dependence on an external source 
of tactics.  For example, suppose CaT’s opponent tries to 
gain  an  advantage via early  use of  air  units.  If  none of 
CaT’s tactics can create air units early on, it will probably 
lose often. With direct access to primitive actions that cre-
ate new units, CASSL is not prone to this problem.

Second,  CaT  cannot  reason  about  causal  relations 
among states, which can be used to improve credit assign-
ment. Standard RL techniques for representing value func-
tions and action-value functions can represent these rela-
tions (Sutton and Barto 1998), which motivates our investi-
gation of an integrated CBR/RL approach in this paper. For 
example, if CaT tends to pick a poor-performing tactic sub-
sequent to a good tactic, then it would average the perfor-
mance across all successor tactics. In contrast, CASSL in-
stead uses a sample backup procedure that can more quick-
ly improve the accuracy of performance approximations.

3.2 CASSL Algorithm
CASSL is a case-based reasoner that responds to each time 
step  of  a  game  trial  by  executing  a  function  LearnAct, 

which updates CASSL’s case bases and returns a new ac-
tion to be performed.  LearnAct inputs a prior state  si-1S, 
an action ai-1A which was taken in state si-1, the state siS 
which resulted from applying ai-1 in si-1, and a reward r. 
It outputs a recommended action aiA. States in S and ac-
tions in A are represented as real-valued feature vectors.

Figure  2  details  CASSL’s  LearnAct function.  It  refer-
ences two case bases, which are updated and queried dur-
ing an episode.  The first  is  the  transition case base T: 
S×A×ΔS, which models the effects of applying actions.  T 
contains observed state transitions that CASSL uses to help 
predict future state transitions. These have the form:

cT = <s, a, Δs>
The  second  case  base  is  the  value  case  base V:  S×, 
which models the value of a state. It contains estimates of 
the  sum of  rewards  that  would  be  achieved  by  CASSL 
starting in a state s and continuing to the end of a trial us-
ing its current policy. Value cases have the form:

cV = <s, v>
Each of CASSL’s two case bases supports a case-based 

problem solving process consisting of a cycle of case re-
trieval,  reuse,  revision, and retention (Aamodt and Plaza 
1994). These cycles are closely integrated because a solu-
tion to a problem in T forms a problem in V; CASSL solves 
these problems in tandem to select an action.

At the start of a trial each of CASSL’s case bases is ini-
tialized to the empty set. CASSL retains new cases and re-
vises them through its application to a sequence of game-
playing episodes. For each new state si that arises during an 
episode, LearnAct is called with its four arguments. 

LearnAct begins with a case retention step in T; if an ex-
perience occurs that is not correctly predicted by T, a new 
case cT,i = <si-1, ai-1, Δs> is added, where Δs = si-si-1 (a vector 
from the prior to the current state). Retention is controlled 
by two parameters τT , and σT (not shown in Figure 2); cT,i is 
retained if  either  the distance  dT(cT,i,1NN(V,cT,i))  between 
cT,i and its nearest neighbor in T is less than τT, or if the dis-
tance dT(cT,i.Δs, T(si-1, ai-1)) between the actual and the esti-
mated transitions is greater than the maximum error per-

Figure 2: CASSL’s learning and action selection function

T: Transition case base <S ×  A ×  ΔS>
V: Value case base <S ×   >
----------------------------
LearnAct(si-1, a i-1, s i, r i-1) =

T ← retainT(T, s i-1 ,a i-1, s i-si-1) ; U pdate transition case base
V ←  

retainReviseV(V , s i-1,retrieve(V ,s i)) ; U pdate value case base
C ←  retrieve(T , s i) ; Retrieve sim ilar transition cases
M ←    ; In itialize the m ap of actions to values
cC : M ← ; Populate it for retrieved cases’ actions

M   <c.a , retrieve(V,s i + c.Δs)>
a i ←  arg max aA reuse(M , a) ; Fetch action w/ m ax predicted rew ard
return a i using the Nelder-M ead sim plex method



mitted, σT. Transition cases are never revised, under the as-
sumption of a deterministic environment.

The second line in  LearnAct  performs conditional case 
retention and revision for  V. A new case cV,i is added to V 
only if the state distance  dV(cV,i,1NN(V,cV,i)) to its nearest 
neighbor in  V is greater than τV (not shown in Figure 2). 
New cases are initialized using the discounted return (Sut-
ton and Barto 1998):
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Otherwise,  cV,i’s k-nearest  neighbors are revised to better 
approximate  the  actual  value  of  this  region  of  the  state 
space.  The  state  value  vk associated  with  each  nearest 
neighbor cV,kkNN(V,cV) is revised according to its contri-
bution to the error in estimating the value of vi-1: 

where vk is the value associated with neighbor cV,k, α (0 ≤ α 
≤ 1) is the learning rate, γ (0 ≤ γ ≤ 1) is a geometric dis-
count factor, and the Gaussian kernel function K(d) = exp(-
d2)  determines the relative contributions of the k-nearest 
neighbors.

Figure 3 summarizes the remaining (action-recommen-
dation) steps of  LearnAct, which next retrieves  C, the set 
of transition cases in T whose states are similar to si. This 
identifies states that are reachable from the current state, 
and actions for transitioning to them (see step 1 in Figure 
3). CASSL uses a simple k-nearest neighbor algorithm on 
states for case retrieval. However, we set k to be large so as 
to retrieve enough information for the later regression step 
to succeed. Specifically:

1
2

2

 a
a

k ,

where |a| is the size of an action vector.
Next,  for  each  nearest  neighbor  cT,k =  <sk,ak,Δsk>, 

CASSL computes the predicted next state that results from 
applying ak in state si, thus creating a mapping M from ac-
tions to the value of the expected resulting state. This value 
is  calculated by performing the vector  addition  Δsk +  si, 
which yields the predicted state  si+1. Then  V  is reused to 
calculate the expected value of state  si+1  (step 3 in Figure 
3). Retrieval and reuse are performed in the same fashion 

as described for the step that updates V. 
CASSL then creates a multi-dimensional model of this 

action-value map using quadratic regression (step 4 in Fig-
ure 3), which is necessary due to the continuous nature of 
the state and action spaces. We chose quadratic regression 
because a quadratic function often produces a useful peak 
that is not at a point in the basis mapping, thereby encour-
aging  exploration.  Higher  orders  of  regression  may also 
produce such results, but are more computationally expen-
sive, and we would like to produce a result in real time.

The  final  step  locates  the  action  that  maximizes  this 
model, and adds it to  M. To compute this, we use Flana-
gan’s (2007) implementation of the Nelder-Mead simplex 
method, a well-known method for finding a maximum val-
ue of a general n-dimensional function.

The quadratic estimate of the value of the discovered ac-
tion is less accurate than a case-based prediction. Thus, we 

iteratively re-create the model,  incorporating more accu-
rate predictions, by repeating Steps 4 and 5 (Figure 3) until 
a similar action is found on two successive iterations, or 
until 50 iterations have passed. Similarity between succes-
sive actions is defined as a Euclidean distance less than a 
small threshold value; we use 0.0001 as the threshold.

4. Evaluation 
Our empirical study focuses on analyzing whether CASS-
L’s  continuous  action  model  significantly  outperforms  a 
similar  algorithm that  instead  employs  a  discrete  action 
model on a task defined in MadRTS. As an experimenta-
tion platform, we used TIELT (2007), the Testbed for Inte-
grating and Evaluating Learning. TIELT is a free tool that 
can be used to evaluate the performance of  an agent on 
tasks in an integrated simulation environment. TIELT man-
aged communication between MadRTS and the agents we 
tested, ran the experiment protocol, and collected results.

  We assessed performance in terms of a variant of regret 
(Kaelbling et  al.  1996) that  calculates  the difference be-
tween the performances of two algorithms over time as a 
percentage  of  optimal  performance.  The  domain  metric 
measured is the number of steps required to complete the 
task. As described in Section 2.1, each step corresponds to 
an order given to a group of units. After 200 steps, a trial is 
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Figure 3: CASSL’s algorithm for action recommendation, where S
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 and S
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Figure 4: Learning performance

cut off, so a value of 200 corresponds to failure.
We compared  the  performance  of  CASSL versus  two 

baseline  algorithms.  The first  is  random,  which  at  each 
time step selects an action randomly from a uniform distri-
bution over the 4-dimensional action space. 

The  second  algorithm  is  a  CMAC  controller  (Albus 
1975),  a  commonly  used  algorithm  for  performing  RL 
tasks in continuous state spaces. It uses a set of overlap-
ping tilings of the state-action space to approximate the RL 
Q(s,a) function. It executes a query by averaging the value 
of the tile in each tiling that corresponds to the state-action 
input. For this experiment, we used five tilings, evenly off-
set from one another. There are 4 tiles per dimension and 
12 dimensions in S×A, which yields a tiling size of 412 and 
a total of 5412 = 83.9M tiles. The structure and basic oper-
ations of our CMAC are similar to those described in (San-
tamaria et al., 1998) with λ=0.9.

For both RL algorithms (CASSL and CMAC),  we set 

α=0.2,  γ=1.0,  and ε=0.5 (exploration parameter).  Both α 
and ε were decreased asymptotically to 0 over time.  For 
CASSL,  we  also  set  λ=0,  k=21,  τT=0.8,  τV=0.05,  and 
σT=0.2. We briefly conducted a manual parameter tuning 
process to obtain reasonable performances from both algo-
rithms, but did not attempt to optimize their settings. 

The MadRTS scenario used for this evaluation has a size 
of 100 x 100 tiles, each covered with flat  terrain.  In the 
starting position, 3 “U.S. Rifleman” (powerful) units con-
trolled by player 1 are clustered around tile <20,22>, 3 “In-
surgent5_AK47” (less powerful) units controlled by player 
2  are clustered about  <2,98>,  and 1 “Insurgent1_AK47” 
(powerful) unit  controlled by player 2 is at  <98,2>. The 
victory condition is set to a value of “conquest”, and diplo-
macy between players 1 and 2 is set to “hostile”. At these 
settings, the opponent will attempt to hold his ground and 
destroy all hostile units that enter visual range. All other 
settings have their default values.

We ran  each  agent  for  10  replications,  each  on  1000 
training trials, and tested on 5 trials after every 25 training 
trials. We report the average testing results. Although each 
agent learned on-line within a testing trial, its memory was 
recorded beforehand and reset  after  each test.  To ensure 

that trials ended in a reasonable amount of time, we cutoff 
any that did not complete after 200 time steps; no reward 
was assigned for the final action of a cutoff trial. A reward 
of −1 was given at each step unless the agent accomplished 
its goal (reward=1000) by eradicating the opponent’s units.

Figure 4 displays the results. The curves shown here are 
monotonically non-increasing because we report the mini-
mum steps taken (per algorithm) on any trial so far in a 
replication and average over these curves. This measure-
ment is reasonable because prior testing performances can 
be repeated by restoring the state of the learner; it is more 
forgiving to algorithms that do not guarantee that learning 
will never decrease performance.

The regret of CMAC compared to CASSL is 3.53, which 
is statistically significant (p=0.001). Thus, CASSL, using 
its best learned behavior so far, is 3.53% closer to optimal 
performance. Comparing CASSL to the random agent, the 
regret is 38.66, which is again significant (p < 0.001).

Figure  5  compares  the  early  learning  performance  of 
CMAC and CASSL up to 200 trials. This period is particu-
larly interesting because it shows that CASSL learns to do 
well earlier than CMAC. The regret during this period (0-
200 training trials) is 9.74 with p=0.017.

5. Discussion
Our goal was to demonstrate that selecting from among all 
possible continuous actions  rather  than a priori  reducing 
their set (e.g., via discretization) can significantly improve 
performance. However, we assessed this on only a single 
scenario, and versus only two other algorithms. In future 
work, we will compare CASSL’s performance, empirically 
and via a computational complexity analysis, with other al-
gorithms that can process continuous action spaces over a 
range of learning and performance tasks. This will include 
variants of CASSL that discretize the action space. 

Other  models  for  regression  of  the  local  action-value 
function (e.g., some higher-order polynomial or other func-
tion entirely) might outperform the model we used. Also, a 
model-free  variant  of  CASSL in  which  the  action-value 
function is represented directly should be studied. The two 
case bases should scale up to higher dimensions more easi-

Figure 5: Early learning performance



ly, but we have not empirically verified this.
We have not optimized CASSL’s performance (e.g., em-

ploying more selective methods for using neighbors to cre-
ate action recommendations). This remains future work.

RTS domains  often  involve  a  variety  of  similar  tasks 
with different initial conditions and varied goals. For ex-
ample, a larger group of units might need to be destroyed 
at a variety of locations both near and far from the agent’s 
home base. We plan to analyze the capability of CASSL 
and other RL agents to generalize over different goals and 
starting conditions in an RTS domain.

6. Conclusions
We introduced a methodology that, unlike our earlier ap-
proach (Aha et al. 2005), can learn and reason with contin-
uous action spaces. To do this it integrates case-based rea-
soning and reinforcement learning methods, and its imple-
mentation in CASSL significantly outperformed two base-
line approaches on a real-time strategy gaming task. 

The primary contribution of this paper was a lazy learn-
ing approach for action generation in a continuous space. 
In  our future work, we will  compare this approach with 
variants of CASSL that are eager, that adopt a Q-learning 
framework, and/or discretize the action space.
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